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Abstract 
One of the problems in replication is how to coordinate 
the updates made to the copies maintained at different 
replicated servers so that data consistency is ensured. 
This paper presents a novel approach to designing 
protocols for  accessing replicated data in a large-scale 
distributed environment such as the Internet. Unlike 
traditional message-passing based protocols which 
require expensive exchanges of messages among the 
replicated servers, the proposed approach uses 
cooperating mobile agents to.synchronize the access to 
the replicated data at different servers. The design of 
such a mobile-agent enabled, fully-distributed protocol 
is presented and a prototypical implementation using 
IBM’s Aglets is described. The performance of the 
protocol is also discussed. 

1. Introduction 
One of the most commonly used methods to enhance 

availability and reliability is to use replication, where 
the server providing the specified service is replicated 
and distributed across several sites on the network. 
These replicated data stores, called replicas, are 
distributed over the Internet and maintain copies of the 
replicated data, which can be accessed by the clients. 
Replication of data can improve availability because if a 
single replica fails, others still exist. It can also improve 
system performance by locating copies of the data near 
to their use or at a lightly loaded server. 

One of the problems in using replication is to 
maintain data consistency between replicas, i.e., to 
guarantee that multiple copies of the same data behave 
like a single copy. Several algorithms, hereafter 
referred to as data replication protocols, have been 
proposed to synchronize the access to the replicated 
data. These protocols aim at providing an abstraction of 
a single copy of the data. However, different protocols 
may provide different consistency guarantees to 
applications. Some protocols provide strict single-copy 
semantics - any application using such a protocol is 
guaranteed to observe all changes to the data in the 
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same time order as any other application using the data. 
They are referred to as consistent protocols [2 ,  11 ,  51. 
Other replication protocols try to obtain better 
performance by using weaker consistency semantics [6] ,  
which allow replicated data objects to be temporally 
inconsistent but place either strict or probabilistic bounds 
on the divergence among replicas. 

Existing data replication protocols are based on the 
message-passing communication model, although various 
communication services such as unicast message sending 
and receiving, multicast protocols, and remote procedure 
call can be used. Using message passing, conventional 
replication protocols are expensive because multiple local 
processes need to participate in sessions of passing 
messages and waiting for replies. Many replicated 
operations require several rounds of message exchange, 
and a replica may need to maintain appropriate context 
to determine its response [l]. Also, existing replication 
protocols are mostly designed for closely coupled 
distributed systems. A protocol that performs well in a 
local-area network may not scale to the world-wide 
Internet environment. This is because these protocols 
may incur large overhead, in both the network traffic and 
message-passing delay, in a wide-area network 
environment and they do not have provision of flexibility 
for adapting to system changes. 

In this paper, we propose a novel approach, called 
MARP (Mobile Agent Enabled Replication Protocols), 
which uses cooperating mobile agents as an aid for 
designing replication control protocols. Mobile agents are 
programs that can autonomously halt execution from a 
host, travel across the network, and continue execution at 
another host [8, 91. Cooperating mobile agents are a 
collection of mobile agents which come together for the 
purpose of exchanging information or in order to engage 
in cooperative task-oriented behaviors [3]. In the 
proposed MARP approach, mobile agents that carry 
requests from clients at different servers cooperate to 
maintain data consistency between replicas. In particular, 
we describe a fully distributed, consistent replication 
protocol using the MAW approach. The protocol is 
based on the well-known Majority Consensus Voting 
(MCV) scheme [ 1 1, 51. 
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Comparing with message passing based protocols, 
the proposed mobile agent-enabled protocol has several 
advantages. First, mobile agent technology provides an 
approach to overcome the difficulties that hamper tight 
interaction between the processes. It has been found 
that, taking the advantages of being in the same site as 
the peer process and autonomously making decisions, 
mobile agent is especially suitable for structuring and 
coordinating wide-area distributed applications that 
require intensive remote computation and remote real- 
time interaction [12]. Second, using mobile agent leads 
to the reduction of the total amount of communications 
and allows us to design algorithms that make use of the 
most up to date system state information for decision 
making. This is because mobile agent can package a 
conversation and dispatches itself to a destination host 
where the interactions can take place locally. 
Furthermore, with mobile agent, a flexible and adaptive 
replication control scheme could be developed according 
to the current system state. Consequently such an 
approach achieves better performance because its 
intrinsic properties of automatically tolerating transit 
faults and dynamic changes of the network. Finally, 
mobile agents can support mobile computing by 
carrying out tasks for a mobile user temporarily 
disconnected from the network. After being dispatched, 
the mobile agents become independent of the creating 
process and can operate asynchronously and 
autonomously. 

In 
Section Two, we describe the preliminaries including 
the terminology, system model, and assumptions. 
Section Three presents the design of the data replication 
protocol using mobile agents. Section Four describes a 
prototypic implementation of the proposed protocol 
using IBM's Aglets, and discusses the performance of 
the protocol. Finally, Section Five concludes the paper. 

The rest of this paper is organized as follows. 

2. System Model and the MACR Framework 
Copies of the replicated data are held at a number of 

replicas, which is part of a replicated server and consists 
of some storage and a process that maintains the data 
copy. Replicas receive read and write requests from 
clients for reading or updating the data. These 
operations are coordinated among the replicas using a 
data replication protocol that provides the client with 
the illusion of a single data object. Replicas also 
perform operations such as failure recovery, creation of 
new replicas and background information transfer. 

We consider distributed computing in a wide-area 
network environment such as the Internet with the 
support of mobile agents. Mobile agents have their own 
identity and behavior and are capable of navigating 
through the underlying network, performing various 
tasks at the sites they visit, and communicating with 
other mobile agents. In the context of this paper, 
replicas are abstracted into a finite set of N mobile 

agent-enabled, cooperating processes. The processes can 
use both message passing and mobile agents in their 
computation. Mobile agents are employed for carrying 
out replication consistency coordination of the 
computations. Figure 1 illustrates the system 
architecture. 

For each request received, a mobile agent is 
dispatched which is responsible of obtaining the 
permission to perform the requested operation. The 
mobile agent carries the request while it travels through 
the replicated servers. After obtaining the permission, it 
informs the replicated servers to process the request. We 
assume that mobile agents are capable of interacting with 
the stationary server processes for reading and writing 
specific data on the remote hosts they visited. 
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Figure 1 : System architecture for mobile agent-enabled 
distributed computation 

The network has asynchronous and reliable logical 
communication channels whose transmission delays are 
unpredictable but finite. A process can fail and recover. It 
fails according to the fail-stop model, that is, when a 
process fails, it immediately halts all processing without 
exhibiting malicious behavior. When a process fails, all 
other processes are informed of the failure in a finite 
time. If a mobile agent cannot migrate to a replicated 
server host after certain amount of time, the protocol 
assumes that the replica process at the host has 
temporarily failed. After certain number of such 
unsuccessful attempts, the protocol declares the replica 
unavailable and does not attempt to visit that replica until 
the next round of request. 

The scale and characteristics of the Internet-based 
environment complicate protocol performance. For 
example, it has been reported that the Internet has long, 
variable communication latency, frequent short transient 
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failures but rare long transient failures, etc.[6]. Data 
replication protocols designed to work in this 
environment should interact with replicas in a 
controlled fashion. The protocols should be sensitive to 
the communication latency of replicas, and should tend 
to communicate with nearby replicas rather than distant 
ones. The protocols should also address the problems 
associated with transient failures. Most existing 
protocols are not designed with such features. 

3. A Mobile Agent Enabled Replication 

3.1 Overview 

Data Algorithm 

Depending on whether synchronization of operations 
at all replicas is performed before or after an update 
makes an access to data objects, consistent replication 
protocols can be divided into two classes [lo]. Protocols 
that perform synchronization before accessing data 
objects are called pessimistic algorithms, while 
protocols that perform synchronization, after accessing 
data objects are called optimistic algorithms. The 
Available Copy (AC) protocol [2], also known as the 
“write-all read-once’’ protocol, is an example of 
optimistic algorithms. Update operations must be 
applied at all available replicas. If all available replicas 
participated in the last update, an application can read 
from any replica and observe the update. 

The AC protocol is vulnerable to communication 
partitions. However, it is usehl in a system where 
access is read-dominated, which is the case in Internet- 
based environments, where most access requests are 
querying about information. An improvement of the AC 
protocol in terms of performance and handling realistic 
network failures is the voting protocols which are 
optimistic protocols [ l l ,  51. Each replica is assigned 
with one or more votes. Each read operation must 
collect a read quorum of at least r votes from replicas 
before it can proceed. Similarly, each write operation 
must collect a write quorum of at least w votes. To 
ensure consistency, r+w must be greater than the total 
number of votes assigned to all replicas so that there is a 
non-empty intersection of copies between every pair of 
read and write operations. In this way, the user will 
have a consistent view of the current state of the system. 

In this paper, we use mobile agents as an aid to 
design a fully distributed protocol for achieving 
consensus among members of a quorum. In our design, 
for simplicity, we consider the scheme that a quorum of 
replicas of an object is simply any majority of its copies 
[5]. A write operation is performed on a write quorum 
of replicas but a read operation may be executed on an 
arbitrary copy. This design consideration is based on the 
assumptions that read operations dominate the requests 
for accessing the replicated data and should be made 

fast. Also, it is acceptable that quires executed on a 
replica are not guaranteed to give an up-to-date answer. 

With the MARP approach, the protocol is written 
from the point of view of the navigating mobile agents, 
rather than from the point of view of a stationary process 
communicating with other such processes [4]. The basic 
ideas of the proposed protocol is as follows: 

For updating a data item, a mobile agent is dispatched 
which travels across the network to obtain consensus 
from a majority of replicas. It is possible that multiple 
mobile agents from different replicated servers request 
to update a replica at the same time. 
At each server visited, the mobile agent requests a lock 
by appending its identifier at the end of the locking list 
maintained by the replica server. Permission of update 
is granted when the mobile agent is ranked the top in 
the locking lists of a majority of servers. 
The majority quorum achieved is used to determine 
both the most up-to-date version of a replica and the 
order of performing requested operations at a 
replicated server. Once a mobile agent obtains the lock, 
it checks the time of last update of all the quorum 
members and uses the most recent copy. It then 
broadcasts a message to all the replicas to request the 
update of the replica. Having collected 
acknowledgement from a majority number of servers, 
the mobile agent multicasts a COMMIT message to 
these servers and then releases the lock. 

3.2 Data Structures 
We have a network of N replicated servers. Each 

server is assigned a unique identifier, which is an integer 
ranging from 1 to N .  Requests received from the client 
will be stored on each individual replica server Si. After a 
pre-defined number of requests have been received or 
periodically, a mobile agent will be created and 
dispatched by Si for processing the requests. 

Each replicated server Si maintains two data 
structures. One is called Locking List (LL), used to store 
the locking information for each visiting mobile agent. 
LL is sorted according to the time the entries are created. 
The other is called Updated List (UL), a list of identifiers 
of the mobile agents that have already obtained the lock 
and performed the actual update. 

In addition, we assume that each server has a routing 
table containing the cost of the transferring a mobile 
agent form the local server to another server in the 
network. This information, together with others, can be 
used by a visiting mobile agent to determine the 
replicated server to visit next. 

When a mobile agent is created, it is assigned a 
unique identifier consisting of the host-name of the 
replicated server where the mobile agent is created plus 
the local creation time. Each mobile agent maintains the 
following data structures: 
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Request List (RL): a list of requests carried by the 
mobile agent. 
0 Un-visited Servers List (USL): a list of servers which 
have not been visited by this mobile agent. Initially, this 
list contains all the replicated servers in the system and 
is sorted by the cost of travelling from the current 
location. Recall that each replicated server is 
responsible of calculating and providing this 
information to the mobile agent. 

Updated Agents List (UAL): a list of mobile agents 
that have already finished their request processing. 
This list is obtained by merging the UL maintained at 
each of the replicated servers. 
0 Locking Table (LT): a table of locking information 
obtained from all visited severs. After a mobile agent 
arrives at a replicated server, it will get the LL of the 
server, and add it to its Locking Table. 

/ 3.3 The Replication Control Algorithm 
For updating a data item, a mobile agent travels 

across the network to obtain consensus from a majority 
of replicas. Upon arrival at a replicated server, the 
mobile agent makes a request to the replica to obtain the 
lock. The replica creates a new entry for the mobile 
agent and appends it to the end of its LL. Permission of 
update is granted when the mobile agent's request 
appears on the top of LLs of a majority of servers. As 
shown later, in our algorithm, each mobile agent 
calculates the priority independently. 

When a mobile agent finished its update, locks from 
this agent will be removed from all locking lists at the 
replicated server sites. Other mobile agents will then be 
able to change their priorities in their locking tables and 
decide which mobile agent will obtain the lock next. 
Mobile agents can exchange their locking information 
by leaving the information at the servers they visited. 
This information may be used by a mobile agent to 
determine which replicated server to visit next. 

Algorithm 1 and Algorithm 2 show the operations 
performed by each mobile agent and each replicated 
server in the system, respectively. N is the number of all 
replicas in the system. The algorithm is defined in terms 
of performing a single request. However, it can be 
extended so that mobile agents can determine not only 
the first mobile agent who will obtain the lock next, but 
also the second agent, the third agent, etc. 

The calculation of priority is done in a fully 
distributed manner by individual mobile agents. On 
visiting a replicated server, a mobile agent learns about 
which mobile agents have higher ranks than it does in 
the server's LL. It will carry the information with it 
when it travels from site to site, thus accumulating the 
locking information in its LT. After it accumulates 
enough information, the mobile agent knows which 
mobile agent has the highest priority to request the lock. 
If several mobile agents achieve an equal number of 
ranks and no further processing is possible (i.e., S + (N- 
M*S) < N/2, where M is the number of mobile agents 

that achieve equal ranks at S servers, and N is the total 
number of replicas), the tie is resolved by using the 
mobile agents' identifiers. 

Algorithm 1: Operations performed by a 
mobile agent 
Initialization: 
Initialize all the data structures; 
Found := False; 
Top-Count := 0; 

While Found o True Do 

i_ ~ . ~~ 

Begin 
Find the server to visit next from USL using routing 
information; 
On arrivab at the server site 

Request lock and update data structures using server- 
provided information; 
If at top of LL Then Top-count ++; 
I/ Calculate priority using LT 
If Top-Count > N I 2 Then 

If M mobile agents achieve equal ranks at S servers 
assign itself the highest priority; 

and ( S  + (N-M*S)) < NI2 Then 
user mobile agent ID to resolve the tie. 

broadcast UPDATE message to all replicated 
servers; 

wait until more than N I 2  acknowledgements have 
been received; 

broadcast COMMIT message to all replicated 
servers; 

Found : = TRUE; 

If Highest Priority Then 

End; 
dispose; 

Algorithm 2: Operations performed by a 
replicated server 

Initialization: 
Initialize all the data structures; 

Upon arrival of a mobile agent: 
If Request-for-Lock Then 

create an entry for the mobile agent and append it  to 
U; 

I1 infromation sharing 
update data structures using information provided by the 
mobile agent; 

perform the requested update and update data structures; 
send an acknowledgement to the mobile agent; 

commit the requested update processing; 

The main concern to be discussed in the remaining of 
this section is to show how the algorithms ensure that 
only one mobile agent is allowed to perform the actual 
updating at a time. This can be shown by proving the 
following two theorems. 

Upon receipt of a UPDATE message: 

Upon receipt of a COMMIT message: 
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Theorem 1: All participating mobile agents agree on 
who is ranked the top in the locking list at each 
individual replicated server. 
Proof: This is straightforward. A mobile agent learns 

about the Locking List of a replicated server by either 
visiting the server site by itself or from other mobile 
agents which have visited the server. In both cases, the 
information about which mobile agent is on the top of 
the LL will be preserved. 

Theorem 2: There is only one highest priority 
mobile agent in the system at any time. 
Proof: This can be derived partially from Theorem 1. 

Since mobile agents have the same view on who is on 
top of the LL at a server, if a mobile agent MA, achieves 
a top rank at a majority of servers, it is agreed by all 
mobile agents that MA, will have the highest priority. In 
the case where a tie exists, every individual mobile 
agent will calculate the priority following the same rule, 
i.e. by using the mobile agent IDS, to resolve the tie. The 
rule guarantees that only one mobile agent will win the 
competition. 

Theorem 3 establishes the lower and upper bounds 
on the number of migrations by the winning mobile 
agent. 

Theorem 3: The winning mobile agent needs to 
migrate at least (N+1) /2  and at most N times in order to 
know the result. 
Proof: The winning mobile agent wins the 

competition by either achieving the top rank at more 
than N/2 replicated servers or by having a higher rank 
in its ID than all other mobile agents that have achieved 
a equal number of top ranks in LLs of replicated servers. 
In either case, the winning mobile agent will know the 
winning result by visiting at least ( (N+1) /2  and at most 
N sites. 

4. Prototypical Implementation and 
Evaluation 
The mobile agent enabled replication management 

framework MAW and the specific algorithms proposed 
in this paper have been implemented on the IBM Aglet 
mobile agent platform [7] over a network of SUN 
workstations running Solaris. The Aglet is a Java-based 
mobile agent framework. The IBM Aglet platform also 
provides an aglet viewer called Tahiti and aglet servers, 
which are powerful machines that can host large 
number of aglets. 

Experiments have been carried out to demonstrate 
the effectiveness of the proposed M A W  framework and 
the algorithms. An interface has been developed to set 
up the experiments and to visualize the execution of 
checkpointing and rollback algorithms. An exponential 
random number generator was used to generate 

requests. In all experiments, for each server, 60-150 
requests were generated at different rates. Experiments 
were set to measure the latency of update operations, and 
the percentages of requests whose locks are obtained by 
visiting a certain numbers of servers. The following 
metrics are used: 
(a) ALT: the average time required by a mobile agent to 

obtain the lock, which equals the average number of 
server sites visited by a mobile agent times the 
average multiply by a mobile agent spent at a server; 

(b) ATT: the average total time required by a mobile 
agent to process an update request. This total latency 
includes the message passing delay for sending the 
UPDATE and COMMIT messages. 

(c) PRK: the percentage of requests whose lock is 
obtained by visiting K number of servers. 
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Figure 2: Average time for obfaining the lock by 
a mobile agent 
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Figure 3: Average time for completing a request 

Figures 2 and 3 show the results of ALT and A m ,  
respectively, obtained by using 3-5 replicated servers 
with different request generation rates. By comparing the 
figures, we can see that the message passing latency is 
the predominant factor determining the latency of 
operations on the replicated data. As the number of 
servers increase, this trend is more obvious. We believe 
that message passing would incur larger overhead if the 
experiments were conducted in a wide-area network such 
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as the Internet. From the figures it can also be observed 
that as the mean arrival time increases both the ALT 
and ATT decrease. 

Figure 4 shows the results of PRK with a 
configuration of 5 replicated servers. As it can be 
observed, for a higher request generation rate wi’th inter- 
arrival time less than 45 milliseconds, for most requests, 
mobile agents need to visit all of the 5 servers in order 
to obtain the lock. However, as the generation rate 
drops, most requests can be granted the lock by having 
their mobile agents visit only 3 servers ( (N+1)/2) .  
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Figure 4: Percentages of request whose lock is obtained 
by visiting K(K = 3, 4, 5) servers 

5. Conclusions. 
In this paper, we proposed the M A W  approach to 

designing replication control protocols. We demostrate 
the feasbility of M A W  by designing a consistent 
replication control protocol using mobile agents as an 
aid. Among others, the protocol has the following 
features: 
0 

0 

It is fully distributed and scalable. 
It avoids heavy message transmission required by 
convention a1 replication control protocols for 
achieving the quorum. A low message overhead 
leads to the improvement in the response time of an 
operation. 
It is order preserving: all updates are performed in 
exactly the same order at all the replicas. 

We verified the correctness of the protocol and 
evaluated its effectiveness and performance. The results 
of the experiments showed that the proposed algorithms 
are effective with good performance. 

The protocol described uses a strategy that yields 
good performance for an object that has a high read-to- 
update ratio, since a read operation needs only to access 
the local copy of the object. Updates must be performed 
at all copies but, since update is not frequent, the 

0 

overhead for update is restrained. It is worth of notice 
that the MAW approach is a generic method, which can 
be used to implement different kinds of replication 
control algorithms. The mobile agents encapsulate the 
data replication protocols and a flexible and adaptive 
replication scheme could be developed according to the 
current state of the system. 
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