
Achieving Replication Consistency Using Cooperating Mobile Agents

Jiannong Cao’, Alvin T.S. Chad, Jie Wu2

Internet Computing and E-Commerce Lab
Department of Computing

Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

1

Abstract
One of the problems in replication is how to coordinate
the updates made to the copies maintained at different
replicated servers so that data consistency is ensured.
This paper presents a novel approach to designing
protocols for accessing replicated data in a large-scale
distributed environment such as the Internet. Unlike
traditional message-passing based protocols which
require expensive exchanges of messages among the
replicated servers, the proposed approach uses
cooperating mobile agents to.synchronize the access to
the replicated data at different servers. The design of
such a mobile-agent enabled, fully-distributed protocol
is presented and a prototypical implementation using
IBM’s Aglets is described. The performance of the
protocol is also discussed.

1. Introduction
One of the most commonly used methods to enhance

availability and reliability is to use replication, where
the server providing the specified service is replicated
and distributed across several sites on the network.
These replicated data stores, called replicas, are
distributed over the Internet and maintain copies of the
replicated data, which can be accessed by the clients.
Replication of data can improve availability because if a
single replica fails, others still exist. It can also improve
system performance by locating copies of the data near
to their use or at a lightly loaded server.

One of the problems in using replication is to
maintain data consistency between replicas, i.e., to
guarantee that multiple copies of the same data behave
like a single copy. Several algorithms, hereafter
referred to as data replication protocols, have been
proposed to synchronize the access to the replicated
data. These protocols aim at providing an abstraction of
a single copy of the data. However, different protocols
may provide different consistency guarantees to
applications. Some protocols provide strict single-copy
semantics - any application using such a protocol is
guaranteed to observe all changes to the data in the

Dept of Computer Science and Engineering
Florida Atlantic University

Boca Raton, FL 33431 -6498
USA

2

same time order as any other application using the data.
They are referred to as consistent protocols [2 , 11 , 51.
Other replication protocols try to obtain better
performance by using weaker consistency semantics [6] ,
which allow replicated data objects to be temporally
inconsistent but place either strict or probabilistic bounds
on the divergence among replicas.

Existing data replication protocols are based on the
message-passing communication model, although various
communication services such as unicast message sending
and receiving, multicast protocols, and remote procedure
call can be used. Using message passing, conventional
replication protocols are expensive because multiple local
processes need to participate in sessions of passing
messages and waiting for replies. Many replicated
operations require several rounds of message exchange,
and a replica may need to maintain appropriate context
to determine its response [l]. Also, existing replication
protocols are mostly designed for closely coupled
distributed systems. A protocol that performs well in a
local-area network may not scale to the world-wide
Internet environment. This is because these protocols
may incur large overhead, in both the network traffic and
message-passing delay, in a wide-area network
environment and they do not have provision of flexibility
for adapting to system changes.

In this paper, we propose a novel approach, called
MARP (Mobile Agent Enabled Replication Protocols),
which uses cooperating mobile agents as an aid for
designing replication control protocols. Mobile agents are
programs that can autonomously halt execution from a
host, travel across the network, and continue execution at
another host [8, 91. Cooperating mobile agents are a
collection of mobile agents which come together for the
purpose of exchanging information or in order to engage
in cooperative task-oriented behaviors [3]. In the
proposed MARP approach, mobile agents that carry
requests from clients at different servers cooperate to
maintain data consistency between replicas. In particular,
we describe a fully distributed, consistent replication
protocol using the MAW approach. The protocol is
based on the well-known Majority Consensus Voting
(MCV) scheme [1 1, 51.

453
1530-2016/01$10.00 0 2001 IEEE

Comparing with message passing based protocols,
the proposed mobile agent-enabled protocol has several
advantages. First, mobile agent technology provides an
approach to overcome the difficulties that hamper tight
interaction between the processes. It has been found
that, taking the advantages of being in the same site as
the peer process and autonomously making decisions,
mobile agent is especially suitable for structuring and
coordinating wide-area distributed applications that
require intensive remote computation and remote real-
time interaction [12]. Second, using mobile agent leads
to the reduction of the total amount of communications
and allows us to design algorithms that make use of the
most up to date system state information for decision
making. This is because mobile agent can package a
conversation and dispatches itself to a destination host
where the interactions can take place locally.
Furthermore, with mobile agent, a flexible and adaptive
replication control scheme could be developed according
to the current system state. Consequently such an
approach achieves better performance because its
intrinsic properties of automatically tolerating transit
faults and dynamic changes of the network. Finally,
mobile agents can support mobile computing by
carrying out tasks for a mobile user temporarily
disconnected from the network. After being dispatched,
the mobile agents become independent of the creating
process and can operate asynchronously and
autonomously.

In
Section Two, we describe the preliminaries including
the terminology, system model, and assumptions.
Section Three presents the design of the data replication
protocol using mobile agents. Section Four describes a
prototypic implementation of the proposed protocol
using IBM's Aglets, and discusses the performance of
the protocol. Finally, Section Five concludes the paper.

The rest of this paper is organized as follows.

2. System Model and the MACR Framework
Copies of the replicated data are held at a number of

replicas, which is part of a replicated server and consists
of some storage and a process that maintains the data
copy. Replicas receive read and write requests from
clients for reading or updating the data. These
operations are coordinated among the replicas using a
data replication protocol that provides the client with
the illusion of a single data object. Replicas also
perform operations such as failure recovery, creation of
new replicas and background information transfer.

We consider distributed computing in a wide-area
network environment such as the Internet with the
support of mobile agents. Mobile agents have their own
identity and behavior and are capable of navigating
through the underlying network, performing various
tasks at the sites they visit, and communicating with
other mobile agents. In the context of this paper,
replicas are abstracted into a finite set of N mobile

agent-enabled, cooperating processes. The processes can
use both message passing and mobile agents in their
computation. Mobile agents are employed for carrying
out replication consistency coordination of the
computations. Figure 1 illustrates the system
architecture.

For each request received, a mobile agent is
dispatched which is responsible of obtaining the
permission to perform the requested operation. The
mobile agent carries the request while it travels through
the replicated servers. After obtaining the permission, it
informs the replicated servers to process the request. We
assume that mobile agents are capable of interacting with
the stationary server processes for reading and writing
specific data on the remote hosts they visited.

Network Network
40m?lYlca!lo? .; ~~, , .communI~atlon . .

1 ,

- , , - - - - , . . .

, I

Agent enable server
I - - - - -

. .
I ,

_ _ I

Agent

. .
I ,

_ _ I

Agent

Agent enable server Agent enable server
, .

, , : . -
. _ . . . _ _ . _ _ . _ . ,

Network communication

Figure 1 : System architecture for mobile agent-enabled
distributed computation

The network has asynchronous and reliable logical
communication channels whose transmission delays are
unpredictable but finite. A process can fail and recover. It
fails according to the fail-stop model, that is, when a
process fails, it immediately halts all processing without
exhibiting malicious behavior. When a process fails, all
other processes are informed of the failure in a finite
time. If a mobile agent cannot migrate to a replicated
server host after certain amount of time, the protocol
assumes that the replica process at the host has
temporarily failed. After certain number of such
unsuccessful attempts, the protocol declares the replica
unavailable and does not attempt to visit that replica until
the next round of request.

The scale and characteristics of the Internet-based
environment complicate protocol performance. For
example, it has been reported that the Internet has long,
variable communication latency, frequent short transient

454

failures but rare long transient failures, etc.[6]. Data
replication protocols designed to work in this
environment should interact with replicas in a
controlled fashion. The protocols should be sensitive to
the communication latency of replicas, and should tend
to communicate with nearby replicas rather than distant
ones. The protocols should also address the problems
associated with transient failures. Most existing
protocols are not designed with such features.

3. A Mobile Agent Enabled Replication

3.1 Overview

Data Algorithm

Depending on whether synchronization of operations
at all replicas is performed before or after an update
makes an access to data objects, consistent replication
protocols can be divided into two classes [lo]. Protocols
that perform synchronization before accessing data
objects are called pessimistic algorithms, while
protocols that perform synchronization, after accessing
data objects are called optimistic algorithms. The
Available Copy (AC) protocol [2], also known as the
“write-all read-once’’ protocol, is an example of
optimistic algorithms. Update operations must be
applied at all available replicas. If all available replicas
participated in the last update, an application can read
from any replica and observe the update.

The AC protocol is vulnerable to communication
partitions. However, it is usehl in a system where
access is read-dominated, which is the case in Internet-
based environments, where most access requests are
querying about information. An improvement of the AC
protocol in terms of performance and handling realistic
network failures is the voting protocols which are
optimistic protocols [l l , 51. Each replica is assigned
with one or more votes. Each read operation must
collect a read quorum of at least r votes from replicas
before it can proceed. Similarly, each write operation
must collect a write quorum of at least w votes. To
ensure consistency, r+w must be greater than the total
number of votes assigned to all replicas so that there is a
non-empty intersection of copies between every pair of
read and write operations. In this way, the user will
have a consistent view of the current state of the system.

In this paper, we use mobile agents as an aid to
design a fully distributed protocol for achieving
consensus among members of a quorum. In our design,
for simplicity, we consider the scheme that a quorum of
replicas of an object is simply any majority of its copies
[5]. A write operation is performed on a write quorum
of replicas but a read operation may be executed on an
arbitrary copy. This design consideration is based on the
assumptions that read operations dominate the requests
for accessing the replicated data and should be made

fast. Also, it is acceptable that quires executed on a
replica are not guaranteed to give an up-to-date answer.

With the MARP approach, the protocol is written
from the point of view of the navigating mobile agents,
rather than from the point of view of a stationary process
communicating with other such processes [4]. The basic
ideas of the proposed protocol is as follows:

For updating a data item, a mobile agent is dispatched
which travels across the network to obtain consensus
from a majority of replicas. It is possible that multiple
mobile agents from different replicated servers request
to update a replica at the same time.
At each server visited, the mobile agent requests a lock
by appending its identifier at the end of the locking list
maintained by the replica server. Permission of update
is granted when the mobile agent is ranked the top in
the locking lists of a majority of servers.
The majority quorum achieved is used to determine
both the most up-to-date version of a replica and the
order of performing requested operations at a
replicated server. Once a mobile agent obtains the lock,
it checks the time of last update of all the quorum
members and uses the most recent copy. It then
broadcasts a message to all the replicas to request the
update of the replica. Having collected
acknowledgement from a majority number of servers,
the mobile agent multicasts a COMMIT message to
these servers and then releases the lock.

3.2 Data Structures
We have a network of N replicated servers. Each

server is assigned a unique identifier, which is an integer
ranging from 1 to N . Requests received from the client
will be stored on each individual replica server Si. After a
pre-defined number of requests have been received or
periodically, a mobile agent will be created and
dispatched by Si for processing the requests.

Each replicated server Si maintains two data
structures. One is called Locking List (LL), used to store
the locking information for each visiting mobile agent.
LL is sorted according to the time the entries are created.
The other is called Updated List (UL), a list of identifiers
of the mobile agents that have already obtained the lock
and performed the actual update.

In addition, we assume that each server has a routing
table containing the cost of the transferring a mobile
agent form the local server to another server in the
network. This information, together with others, can be
used by a visiting mobile agent to determine the
replicated server to visit next.

When a mobile agent is created, it is assigned a
unique identifier consisting of the host-name of the
replicated server where the mobile agent is created plus
the local creation time. Each mobile agent maintains the
following data structures:

455

Request List (RL): a list of requests carried by the
mobile agent.
0 Un-visited Servers List (USL): a list of servers which
have not been visited by this mobile agent. Initially, this
list contains all the replicated servers in the system and
is sorted by the cost of travelling from the current
location. Recall that each replicated server is
responsible of calculating and providing this
information to the mobile agent.

Updated Agents List (UAL): a list of mobile agents
that have already finished their request processing.
This list is obtained by merging the UL maintained at
each of the replicated servers.
0 Locking Table (LT): a table of locking information
obtained from all visited severs. After a mobile agent
arrives at a replicated server, it will get the LL of the
server, and add it to its Locking Table.

/ 3.3 The Replication Control Algorithm
For updating a data item, a mobile agent travels

across the network to obtain consensus from a majority
of replicas. Upon arrival at a replicated server, the
mobile agent makes a request to the replica to obtain the
lock. The replica creates a new entry for the mobile
agent and appends it to the end of its LL. Permission of
update is granted when the mobile agent's request
appears on the top of LLs of a majority of servers. As
shown later, in our algorithm, each mobile agent
calculates the priority independently.

When a mobile agent finished its update, locks from
this agent will be removed from all locking lists at the
replicated server sites. Other mobile agents will then be
able to change their priorities in their locking tables and
decide which mobile agent will obtain the lock next.
Mobile agents can exchange their locking information
by leaving the information at the servers they visited.
This information may be used by a mobile agent to
determine which replicated server to visit next.

Algorithm 1 and Algorithm 2 show the operations
performed by each mobile agent and each replicated
server in the system, respectively. N is the number of all
replicas in the system. The algorithm is defined in terms
of performing a single request. However, it can be
extended so that mobile agents can determine not only
the first mobile agent who will obtain the lock next, but
also the second agent, the third agent, etc.

The calculation of priority is done in a fully
distributed manner by individual mobile agents. On
visiting a replicated server, a mobile agent learns about
which mobile agents have higher ranks than it does in
the server's LL. It will carry the information with it
when it travels from site to site, thus accumulating the
locking information in its LT. After it accumulates
enough information, the mobile agent knows which
mobile agent has the highest priority to request the lock.
If several mobile agents achieve an equal number of
ranks and no further processing is possible (i.e., S + (N-
M*S) < N/2, where M is the number of mobile agents

that achieve equal ranks at S servers, and N is the total
number of replicas), the tie is resolved by using the
mobile agents' identifiers.

Algorithm 1: Operations performed by a
mobile agent
Initialization:
Initialize all the data structures;
Found := False;
Top-Count := 0;

While Found o True Do

i_ ~ . ~~

Begin
Find the server to visit next from USL using routing
information;
On arrivab at the server site

Request lock and update data structures using server-
provided information;
If at top of LL Then Top-count ++;
I/ Calculate priority using LT
If Top-Count > N I 2 Then

If M mobile agents achieve equal ranks at S servers
assign itself the highest priority;

and (S + (N-M*S)) < NI2 Then
user mobile agent ID to resolve the tie.

broadcast UPDATE message to all replicated
servers;

wait until more than N I 2 acknowledgements have
been received;

broadcast COMMIT message to all replicated
servers;

Found : = TRUE;

If Highest Priority Then

End;
dispose;

Algorithm 2: Operations performed by a
replicated server

Initialization:
Initialize all the data structures;

Upon arrival of a mobile agent:
If Request-for-Lock Then

create an entry for the mobile agent and append it to
U;

I1 infromation sharing
update data structures using information provided by the
mobile agent;

perform the requested update and update data structures;
send an acknowledgement to the mobile agent;

commit the requested update processing;

The main concern to be discussed in the remaining of
this section is to show how the algorithms ensure that
only one mobile agent is allowed to perform the actual
updating at a time. This can be shown by proving the
following two theorems.

Upon receipt of a UPDATE message:

Upon receipt of a COMMIT message:

456

Theorem 1: All participating mobile agents agree on
who is ranked the top in the locking list at each
individual replicated server.
Proof: This is straightforward. A mobile agent learns

about the Locking List of a replicated server by either
visiting the server site by itself or from other mobile
agents which have visited the server. In both cases, the
information about which mobile agent is on the top of
the LL will be preserved.

Theorem 2: There is only one highest priority
mobile agent in the system at any time.
Proof: This can be derived partially from Theorem 1.

Since mobile agents have the same view on who is on
top of the LL at a server, if a mobile agent MA, achieves
a top rank at a majority of servers, it is agreed by all
mobile agents that MA, will have the highest priority. In
the case where a tie exists, every individual mobile
agent will calculate the priority following the same rule,
i.e. by using the mobile agent IDS, to resolve the tie. The
rule guarantees that only one mobile agent will win the
competition.

Theorem 3 establishes the lower and upper bounds
on the number of migrations by the winning mobile
agent.

Theorem 3: The winning mobile agent needs to
migrate at least (N+1) /2 and at most N times in order to
know the result.
Proof: The winning mobile agent wins the

competition by either achieving the top rank at more
than N/2 replicated servers or by having a higher rank
in its ID than all other mobile agents that have achieved
a equal number of top ranks in LLs of replicated servers.
In either case, the winning mobile agent will know the
winning result by visiting at least ((N+1) /2 and at most
N sites.

4. Prototypical Implementation and
Evaluation
The mobile agent enabled replication management

framework MAW and the specific algorithms proposed
in this paper have been implemented on the IBM Aglet
mobile agent platform [7] over a network of SUN
workstations running Solaris. The Aglet is a Java-based
mobile agent framework. The IBM Aglet platform also
provides an aglet viewer called Tahiti and aglet servers,
which are powerful machines that can host large
number of aglets.

Experiments have been carried out to demonstrate
the effectiveness of the proposed M A W framework and
the algorithms. An interface has been developed to set
up the experiments and to visualize the execution of
checkpointing and rollback algorithms. An exponential
random number generator was used to generate

requests. In all experiments, for each server, 60-150
requests were generated at different rates. Experiments
were set to measure the latency of update operations, and
the percentages of requests whose locks are obtained by
visiting a certain numbers of servers. The following
metrics are used:
(a) ALT: the average time required by a mobile agent to

obtain the lock, which equals the average number of
server sites visited by a mobile agent times the
average multiply by a mobile agent spent at a server;

(b) ATT: the average total time required by a mobile
agent to process an update request. This total latency
includes the message passing delay for sending the
UPDATE and COMMIT messages.

(c) PRK: the percentage of requests whose lock is
obtained by visiting K number of servers.

,QQQ ,& $Q@ ,.rQ ,.o" ,QQQ

Mean Arrival Time (milliseconds)

Figure 2: Average time for obfaining the lock by
a mobile agent

I

- 3 semen

-b- 4 semen r 5 SeNCn

3000 4000 5000 6000 7000 8000 9000

Mean Amva Time (milliseconds)

Figure 3: Average time for completing a request

Figures 2 and 3 show the results of ALT and A m ,
respectively, obtained by using 3-5 replicated servers
with different request generation rates. By comparing the
figures, we can see that the message passing latency is
the predominant factor determining the latency of
operations on the replicated data. As the number of
servers increase, this trend is more obvious. We believe
that message passing would incur larger overhead if the
experiments were conducted in a wide-area network such

457

as the Internet. From the figures it can also be observed
that as the mean arrival time increases both the ALT
and ATT decrease.

Figure 4 shows the results of PRK with a
configuration of 5 replicated servers. As it can be
observed, for a higher request generation rate wi’th inter-
arrival time less than 45 milliseconds, for most requests,
mobile agents need to visit all of the 5 servers in order
to obtain the lock. However, as the generation rate
drops, most requests can be granted the lock by having
their mobile agents visit only 3 servers ((N+1)/2) .

80

70

60

3 50
Y 40 a:

30

20

10

0

-

4000 5000 6000 7000 8000 9000 10000

Mean Inter-arrival Time (milliseconds)

-+- 3 sewen

+ 4 sewen

5 sewen

Figure 4: Percentages of request whose lock is obtained
by visiting K(K = 3, 4, 5) servers

5. Conclusions.
In this paper, we proposed the M A W approach to

designing replication control protocols. We demostrate
the feasbility of M A W by designing a consistent
replication control protocol using mobile agents as an
aid. Among others, the protocol has the following
features:
0

0

It is fully distributed and scalable.
It avoids heavy message transmission required by
convention a1 replication control protocols for
achieving the quorum. A low message overhead
leads to the improvement in the response time of an
operation.
It is order preserving: all updates are performed in
exactly the same order at all the replicas.

We verified the correctness of the protocol and
evaluated its effectiveness and performance. The results
of the experiments showed that the proposed algorithms
are effective with good performance.

The protocol described uses a strategy that yields
good performance for an object that has a high read-to-
update ratio, since a read operation needs only to access
the local copy of the object. Updates must be performed
at all copies but, since update is not frequent, the

0

overhead for update is restrained. It is worth of notice
that the MAW approach is a generic method, which can
be used to implement different kinds of replication
control algorithms. The mobile agents encapsulate the
data replication protocols and a flexible and adaptive
replication scheme could be developed according to the
current state of the system.

Acknowledgements
This research is partially supported by Hong Kong

Polytechnic Univ. under HK PolyU Research Grant G-T200.
The authors wish to thank C.K. Cheng for his assistance in
implementing the prototype of the proposed framework and
algorithms.

References
H.E. Bal, M.F. Kaashock and AS. Tanenbaum, “Orca: A
Language for Parallel Programming of Distributed
Systems”, IEEE Trans. Software Engineering, 18, 3
(Mar.), 1992. pp. 190-205.
P.A. Bernstein, V. Hadzilacos, and N. Goodman,
“Concurrency Control and Recovery in Database
Systems”, Addison- Wesley, Reading, Massachusetts, 1987.
J. Cao, G.H. Chan, W. Jia, and T. Dillon, “Checkpointing
and Rollback of Wide-Area Distributed Applications
Using Mobile Agents”, to appear in Proc. IEEE 2001
International Parallel and Distributed Processing
Symposium (IPDPS2001), April 2001, San Francisco,
USA.
M. Fukuda, L. F. Bic, M. B. Dillencourt, and F. Merchant,
“MESSANGERS: Distributed Computing Using Mobile
Autonomous Objects”, Information Sciences, 1997.
D.J. Gifford, “Weighted Voting for Replicatied Data”,
Proc. Th ACM Symp. On Operating Systems Principles,
Pacific Grove, California, Dec. 1979, pp. 150-162.
R.A. Golding, “Accessing Replicated Data in Large-scale
Distributed System”, MSc. Thesis, Dept of Computer and
Information Sciences, Univ. of California, Santa Cruz.
June 1991.
D. B. Lange and M. Oshima, “Programming and
Deploying Java Mobile Agents with Aglets”, Addison
Wesley, 1998.

D. B. Lange and M. Oshima, “Seven Good Reasons for
Mobile Agents”, Communication of the ACM, Vol. 42,

V. A. Pham and A. Karmouch, “Mobile Software Agents:
An Overview”, IEEE Communications Magazine, July

NO. 3, March 1999. pp. 88-89.

1988. pp. ‘26-37.
[lo] M. Singhal, “Update transport: A new Technique for

Update Synchronization in Replicated Database Systems”,
IEEE Transactions on Software Engineering, Vol. 16, No.
12, Dec. 1990. pp.1325-1336. -

[l 11 R.H. Thomas, “A Majority Consensus Approach to
Concurrency Control”, ACM Transactions on Database
Systems, 4, 1979. 4.180-209.

[12] C. Xu and D. Tao, “Building Distributed Applications
with Aglet”, htto://www.cs.duke.edu/chonrr/aglet

458

